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ABSTWCT 

The integration of a class of hypersonic high-lift configurations known as 

waveriders into hypersonic cruise vehicles was evaluated. Waveriders offer advantages in 

aerodynamic performance and propulsiodairframe integration (PAI) characteristics over 

conventional hypersonic shapes. A wind-tunnel model was developed which integrates realistic 

vehicle components with two waverider shapes, referred to as the “straight-wing” and “cranked- 

wing” shapes. Both shapes were conical-flow-derived waveriders at a design Mach number of 4.0. 

The cranked-wing shape was designed to provide advantages in subsonic performance and 

directional stability over conventional waveriders. Experimental data and limited computational 

fluid dynamics (CFD) predictions were obtained over a Mach number range of 2.3 to 4.63 at a 

Reynolds number of 2.0~10~ per foot. The CFD predictions and flow visualization data confirmed 

the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider 

flow-field properties. Both CFD predictions and experimental data showed that no significant 

performance degradations occur at off-design Mach numbers for the waverider shapes and the 

integrated configurations. The experimental data showed that the effects of adding a realistic 

canopy were minimal. The effects of adding engine components were to increase the drag and thus 

degrade the aerodynamic performance of the configuration. A significant degradation in 

aerodynamic performance was observed when 0’ control surfaces were added to close the blunt 

base of the waverider to a sharp trailing edge. A comparison of the fully-integrated waverider 

models to the baseline shapes showed that the performance was significantly degraded when all of 

the components were added to the waveriders. The fully-integrated configurations studied here do 

not offer significant performance advantages over conventional hypersonic vehicles, but still offer 

advantages in air-breathing propulsion integration. Additionally, areas are identified in this study 

where improvements could be made to enhance the performance. Both fully-integrated 

configurations are longitudinally unstable over the Mach number range studied for unpowered 

conditions. The cranked-wing fully-integrated configuration provided significantly better lateral- 

directional stability characteristics than the straight-wing configuration. 
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CHAPTER 1 
INTRODUCTION 

The objectives of this study are to evaluate, using both experimental and 

computational methods, the aerodynamic performance and stability characteristics of a class of 

hypersonic high-lift configurations known as waveriders. Additionally, the study will determine 

the effect on aerodynamic performance and stability of integrating realistic vehicle components 

with pure waverider forebodies. To accomplish these objectives, a wind-tunnel model which 

integrates two pure waverider shapes with various canopies, wings, engine components and control 

surfaces was fabricated and tested. Limited computational predictions were also obtained in order 

to provide comparisons with experimental data and design-code predictions. The results will 

create an aerodynamic data base for waverider-derived configurations, will show the effects of 

individual realistic vehicle components on waverider performance and will quantify the 

differences in aerodynamic performance and stability between the baseline waverider shapes and 

the fully-integrated yaverider configurations. 

A waverider is any shape that is designed such that the bow shock is perfectly 

attached along the outer leading edge at the design condition. The waverider design method leads 

to several advantages over conventional hypersonic concepts. The attached leading edge shock 

wave confines the high pressure region to the lower surface and leads to high lift-to-drag ratios. 

Design predictions suggest that waveriders have an aerodynamic performance advantage, in terms 

of higher lift-to-drag ratios, over existing hypersonic vehicles. The flow field below the waverider 

bottom surface is uniform and, in the case of waveriders derived from axisymmetric flow fields, 

there is no crossflow in this region, making these shapes attractive candidates for engine 

integration. These advantages have led to interest in using waverider shapes as the forebodies of 

hypersonic air-breathing engine-integrated airframes. Waveriders have been considered for 

various types of missions including hypersonic cruise, single-stage-to-orbit and various space- 

based applications. 

Waveriders were first introduced in the 1950’s by Nonweiler in the form of “caret- 
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shaped" waveriders, designed from supersonic flows over simple wedges.' Early waverider shapes 

were not considered for any practical application due to many criticisms associated with these 

shapes. These criticisms included poor off-design performance, poor volumetric efficiencies and 

design methods which relied on inviscid techniques. Recent research in this area has addressed 

many of these issues. Experimental and computational research has shown that waveriders can be 

designed which provide not only excellent aerodynamic performance at the design point, but also 

reasonable performance at off-design Mach numbers. * * * New design methods are able to 

produce shapes which have good aerodynamic performance as well as high volumetric efficiencies. 

Finally, the most recent design codes are capable of including an estimate for skin friction in the 

optimization process, resulting in more realistic shapes and performance predictions? These 

advances have led to a renewed interest in waverider-derived configurations. 

The current study examines the aerodynamic performance and stability of a 

waverider-derived hypersonic cruise vehicle. No data currently exist which address the integration 

of realistic vehicle components with waverider configurations. Therefore, the objectives of this 

study are threefold. The first is to create an experimental and computational data base for 

waverider-derived configurations. The second is to examine the effects of individual vehicle 

components on pure waverider performance. The final objective is to determine the differences in 

aerodynamic performance and stability which result from integrating all vehicle components and 

to assess whether the fully-integrated waverider-derived configuration provides the same 

advantages that the pure waverider does. The objectives of the study will be accomplished using 

results from wind-tunnel testing and limited computational fluid dynamics (CFD) solutions for the 

flow fields of some of the baseline waverider shapes. A wind tunnel model was designed which 

integrates canopies, engine packages and control surfaces with two Mach 4.0 waverider 

configurations. The model was tested in the Unitary Plan Wind Tunnel (UPWT) at NASA Langley 

Research Center. Limited CFD predictions were obtained for the baseline waverider 

configurations in order to provide comparisons with experimental data and design-code 

predictions. 
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This thesis contains a description of waverider design theory and a discussion of the 

method used in the development of the baseline waverider configurations and the integrated 

vehicle components. The details of the experimental study are presented, including a description 

of the facility, test conditions, instrumentation and data obtained. The computational method used 

to obtain the CFD predictions is also presented, including the method of generating computational 

grids and the flow solver used in the study. The results are presented in two chapters. Chapter 5 

shows the results of the baseline waverider configurations without integrated components. This 

chapter shows comparisons between computational and experimental data at selected angles of 

attack at the design Mach number as well as at off-design Mach numbers. Aerodynamic 

performance characteristics are examined together with longitudinal, directional and lateral 

stability data. Flow-field characteristics are also examined using schlieren and vapor-screen 

photographs from wind-tunnel tests as well as CFD flow-field solutions. Chapter 6 shows the 

experimental results of integrating aircraft components on the baseline waverider shapes. The 

effects of the canopy, engine components and control surfaces on aerodynamic performance and 

stability are examined. The characteristics of the fully-integrated waverider-derived 

configurations are also examined and compared to those of the baseline waverider configurations. 

Finally, Chapter 7 presents interpretations and conclusions from the data presented. 
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CHAPTER 2 
WAVERIDER DESIGN METHODS AND CONFIGURATION DEVELOPMENT 

2.0 summary 

A specific waverider shape is designed by selecting freestream conditions, the type 

and dimensions of the generating flow-field body and the shape of the leading edge, which is 

defined on the shock wave produced by the generating body. The resulting waverider shape 

provides advantages over conventional hypersonic shapes in terms of aerodynamic performance 

and propulsionlairframe integration (PAI) characteristics. A waverider design code was used 

which employs an optimization routine to design various types of waveriders and includes viscous 

effects and user-specified volumetric constraints in the optimization process. This code was used 

to design two waverider shapes for the current study using design conditions and volumetric 

constraints that were selected based on a hypersonic-cruise vehicle application. A wind-tunnel 

model was designed which integrated the two waverider forebodies with canopies, engine 

components and control surfaces. 

2.1 Waverider Design Methods 

A specific waverider shape is uniquely defined by freestream conditions, the type 

of generating flow-field body and a leading edge definition? The shapes of the upper and lower 

surfaces of the configuration follow from these parameters. The freestream conditions, including 

Mach number and Reynolds number or altitude, are selected based on mission criteria. The 

generating flow-field body is used to define the shock shape upon which the leading edge of the 

waverider is defined. Any arbitrary body in supersonic or hypersonic flow can be used as a 

generating flow-field body. This study focuses specifically on conical-flow-derived waveriders. 

The generating flow-field body used for the configurations in this study is a right circular cone in 

supersonic or hypersonic flow. The length of the generating cone, length of the waverider and 

semi-apex angle of the cone are generally specified by the designer. The selection of these 

parameters can have a significant effect on the shape of the waverider generated as well as on the 
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aerodynamic performance of the configuration. The planform shape, or leading edge, is defined on 

the shock wave produced by the cone. The inviscid conical flow field behind the shock wave is 

obtained from the Taylor-Maccoll equation, which is given as6 

where, 

V, = component of velocity along a conical ray, 
0 = angle of the ray referenced to the axis of the cone, 
y = ratio of specific heats. 

Figure 2.1 illustrates the design of a conical-flow derived waverider. The lower surface of the 

configuration is defined by tracing streamlines from the leading edge to the base of the 

configuration. The result is that the lower compression surface is a stream surface behind the 

conical shock wave. The upper surface may be designed using a number of different methods. 

Among the most common methods are to design the surface as a freestream surface or as a slight 

expansion surface. The conical flow field, defined behind the shock wave, exists only on the lower 

surface flow field of the waverider. 

The resulting configuration provides two distinct advantages over existing 

hypersonic configurations. The first is an aerodynamic performance advantage over conventional 

vehicles?96 Theoretically, the shock wave is perfectly attached along the outer leading edge at the 

design Mach number. The result is that the high pressure region behind the shock wave is confined 

to the lower surface and no flow spillage from the lower surface to the upper surface occurs. The 

maximum lift-to-drag ratios which are produced by this method are higher than those of existing 

hypersonic configurations. Figure 2.2, taken from reference 7, shows the traditional “L/D barrier” 

in the supersonichypersonic regime for conventional vehicles. This is an empirical correlation 

based on actual flight vehicle experience and extrapolated to hypersonic Mach numbers8 The 

symbols in the figure represent predictions for conical-flow-derived waveriders generated using the 

current method, which is described in detail in reference 7. In general, the conical-flow-derived 

waveriders show an increase in maximum lift-to-drag ratio from the traditional L/D barrier. 
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Another advantage of axisymmetric waverider flow fields is that they provide excellent propulsion,' 

airframe integration (PAT) characteristics9 The lower surface flow field is highly uniform, and 

there is no crossflow in this region. These characteristics are ideal for the integration of scramjet 

engine modules. The aerodynamic performance and PAI benefits offered by waveriders have 

generated interest in their use for various hypersonic vehicle designs. 

Waveriders are typically optimized for some parameter such as maximum lift-to- 

drag ratio or minimum drag at the freestream conditions specified. The choice of optimization 

parameter is based on the type of vehicle desired or on various mission criteria. For example, 

maximum lift-to-drag ratio would be more appropriate as a design parameter for hypersonic cruise 

vehicles, while a minimum drag shape would be appropriate for single-stage-to-orbit missions. 

This study will focus on waveriders optimized for maximum lift-to-drag ratio at prescribed 

freestream conditions. 

2.2 MAXWARP Design Code 

The design code utilized in this study is the (University of) Maryland Axisymmetric 

Waverider Program (MAXWLXRP)?~~~'~ The MAXWARP code is an inviscid design method 

which includes an estimate for skin friction in the design process. The code uses a simplex 

optimization routine to optimize waveriders for a given figure of merit: maximum lift-to-drag ratio 

or minimum drag. Various volumetric constraints may also be imposed by the user in order to 

produce waveriders with desirable structural characteristics and component packaging. These 

constraints include values for aspect ratio, slenderness ratio and total volume. 

The procedure in h4AXWARP is to create new waverider shapes over a number of 

iterations until the optimum shape is found. For the case of conical-flow-derived waveriders, the 

Taylor-Mac011 equation is integrated using a fourth order Runge-Kutta method to compute the 

inviscid conical flow field behind the shock wave. The cone semi-apex angle and length of the 

flow-field generating body are specified by the user along with freestream conditions. The code 

starts with an initial leading edge definition on the conical shock wave and then creates a waverider 
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shape from this initial leading edge. The basis leading edges are defined by pre-set functions in the 

code and are not specified by the designer. The pressure distributions on the surface of the 

configuration are integrated to calculate lift and drag coefficients. Additionally, an estimate for 

skin friction is included so that force coefficient predictions include both inviscid and viscous 

effects. The optimization routine generates an updated leading edge that drives towards the desired 

figure of merit? At each step, a new leading edge definition is used to generate a new waverider 

shape and calculate the force coefficients. The code eliminates any shape which violates any of the 

user-specified volumetric constraints. 

The inclusion of a skin friction estimate within the optimization process is one of 

the unique aspects of the MAXWARP code. As a result, the optimization routine attempts to 

minimize wetted surface area and thereby reduce skin friction drag. The skin friction coefficient, 

Cf, is calculated using the reference temperature method which is given as" 
0.0592 

(Re',) O s 2  

Cf = 

where the reference Reynolds number, Retx, is given by 

and 

p ' = reference density, 

V, = Freestream Velocity, 

p' = reference viscosity, 

1 = distance downstream of the leading edge. 

The reference density and viscosity are evaluated at the reference temperature, T', which is given 
by 

T' - = 1 + 0.032M: + 0.58 
Too 

where 

T, = Freestream temperature (K), 

M, = Local Mach number, 

(2.4) 

T, = Wall temperature (K). 
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Equations (2.2) and (2.4) apply to a turbulent boundary layer. MAXWARP allows the designer to 

specify a fully-turbulent or fully-laminar boundary layer. The wall temperature is specified by the 

designer as part of the initial set of input parameters. The inclusion of skin friction in the 

optimization routine of MAXWARF’ addresses a major criticism of waveriders. Previously, only 

inviscid methods were used which resulted in shapes with large surface areas and therefore, large 

values of skin friction. The true lift-to-drag ratios of these configurations were typically poor 

compared to predicted values. The effect of including skin friction in the optimization routine is 

to generate shapes that have relatively smaller wetted surface areas than those designed by purely 

invisicid methods. The class of waveriders generated using this method are referred to as “viscous- 

optimized” waveriders. However, the term “viscous-optimized” in this context only refers to the 

inclusion of a skin friction estimate in force coefficient values within the optimization routine. The 

code does not account for the change in effective surface shape which results from the presence of 

a boundary layer. 

The code also contains an option which allows the designer to specify a set of 

leading edge coordinates to design a specific waverider shape, without running the optimization 

routine. Using this option, the code simply designs the upper and lower surfaces from the given 

leading edge coordinates and computes force coefficient estimates for the design. 

2.3 Design Conditions for the Current Study 

The baseline waverider configurations used in this study were designed using the 

MAXWARP design code. The parameters for freestream conditions and optimization parameters 

were chosen based on the applicability of this study to a hypersonic cruise vehicle, with facility 

limitations taken into account. The design freestream Mach number was 4.0 and the design 

Reynolds number was 2 . 0 ~ 1 0 ~  per foot. Although the specific Mach number range of interest for 

this type of vehicle would be approximately 5.0 to 5.5, Mach 4.0 was selected as the design point 

based on the limitations of the Unitary Plan Wind Tunnel (UPWT) and the range of data desired. 

The Mach number range in the high Mach number test section of this facility is 2.3 to 4.63. A 
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design point of Mach 4.0 allows data to be obtained at, above and below the design point. This 

will allow for the validation of the waverider concept at the design Mach number and will also 

allow for the evaluation of off-design performance. Data obtained in this range of Mach numbers 

would be applicable to a Mach 5.0-5.5 vehicle with only a re-design of the waverider forebody 

necessary in order to achieve shock attachment at the design point of interest. The Reynolds 

number chosen is based on nominal operating conditions in the UPWT. The configuration was 

optimized for maximum lift-to-drag ratio at the design point since this is more appropriate as a 

hypersonic cruise performance parameter than minimum drag. 

A fully turbulent boundary layer was specified in the design with a wall temperature 

of 585 %. It is not likely that fully laminar conditions could be maintained in experimental testing 

at the conditions of interest and transition is difficult to predict. Fully turbulent conditions can be 

maintained by the application of boundary layer transition grit to the model surface. The wall 

temperature was selected based on previous experimental data from models tested in the UPWT. 

A right circular cone was used as the generating flow-field body for the waverider 

shape. A study was conducted, using the MAXWARP code, to determine the semi-apex angle of 

the cone that would provide the highest maximum lift-to-drag ratio at the conditions specified. 

This was done by generating waveriders using various cone angles and selecting the value that 

yielded the best aerodynamic performance. Based on this study, a cone semi-apex angle of 8.1 

degrees was selected. Figure 2.3 shows the variation of lift-to-drag ratio with cone semi-apex angle 

for the cases generated. 

The optimum waverider shape generated at the conditions specified, with no 

volumetric constraints imposed, provides excellent aerodynamic performance but poor volumetric 

efficiency and structural characteristics. Therefore, some volumetric constraints were incorporated 

into the optimization routine in order to meet certain design guidelines. These guidelines were 

based on desired characteristics of a waverider-derived hypersonic cruise vehicle and include 

target values for aspect ratio, volumetric efficiency, PAI characteristics and structural 

characteristics.12 The target value of span-to-length ratio was 0.8. Larger span waveriders yield 
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better aerodynamic performance, but are difficult to integrate as a full waverider-based vehicle. An 

attempt was made to increase the volumetric efficiency from the unconstrained value while 

accepting a minimum penalty in lift-to-drag ratio. The volumetric efficiency is defined as 

where, 

V e ~  = volumetric efficiency, 

V = Total Volume 

Swet = Wetted Surface area. 

Additionally, a configuration with a flat or slightly convex bottom surface was desired for ease in 

propulsion systems integration. A configuration free of substantial curvature over most the cross 

section was also desired for structural support within the model and for the inclusion of an internal 

spar in an actual aircraft. These guidelines were achieved by adjusting the user-specified 

volumetric constraints described previously as well as the length of the flow-field generating cone. 

2.4 Waverider Description 

Two different waverider shapes were developed for this study. The first shape is 

referred to as the “straight-wing” shape and was designed using the MAXWARP optimization 

routine using the guidelines previously outlined in section 2.3. The second shape, referred to as 

the “cranked-wing” shape, was designed by adjusting the leading edge of the straight configuration 

to create a curved wing-tip shape that has increased aspect ratio, but still maintains shock 

attachment along the outer leading edge at the design freestream condition. The term “cranked” in 

this context refers to a shape in which the sweep angle not only changes, but also has a large 

dihedral angle in the plane of the base. The cranked-wing shape is designed to provide 

improvements in subsonic performance and directional stability, while maintaining the waverider 

aerodynamic performance advantage in the supersonichypersonic regime. 

A 3-view drawing and an oblique view of the straight-wing waverider shape is 

shown in figure 2.4. The selected shape meets most of the design guidelines specified previously. 
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The span-to-length ratio is 0.824. This is greater than the target value of 0.8, but is the lowest value 

that could be obtained without violating other constraints. The volumetric efficiency was increased 

by 17.9 percent over the unconstrained waverider shape to a value of 0.112. This increase in 

volumetric efficiency corresponded to only a 2.75 percent decrease in maximum lift-to-drag ratio, 

so the objective of obtaining a higher volumetric efficiency without suffering a large penalty in 

aerodynamic performance was achieved. Figure 2.5 shows the trade-off between volumetric 

efficiency and aerodynamic performance. This figure shows the lift-to-drag ratio and volumetric 

efficiency of the straight and cranked leading-edge waveriders as well as the optimized waverider 

with no volumetric constraints imposed (labeled as “unconstrained”). Also shown on the figure are 

two other cases with different volumetric constraints specified. These designs, labeled 

“constrained waverider” and “waverider designed close to apex of cone” are different waverider 

shapes that were not selected for the model design. Note that the waverider designed close to the 

apex of the cone provides high volumetric efficiency, but poor aerodynamic performance. Such 

configurations are not desirable because the departure from the aerodynamic performance of the 

unconstrained optimized case is too great. The lower surface of the straight-wing configuration has 

a slight convex curvature which facilitates integration of the propulsion system. The length of the 

waverider configuration was selected to be 24.0 inches based on the size of the test section in the 

UPWT. The length of the generating cone was selected to be twice the length of the waverider 

configuration. The selection of these dimensions fixes the location of the waverider on the conical 

shock wave. A selection of different locations on the conical shock wave would result in 

waveriders with much different structural characteristics. A diagram of the location of the 

waverider on the conical shock wave is shown in figure 2.6. Table 2.1 summarizes the 

characteristics of the straight-leading-edge waverider. 

A 3-view drawing and an oblique view of the cranked-leading-edge waverider 

shape is shown in figure 2.7. The cranked-wing shape was designed by altering the leading edge 

of the straight-wing waverider and then using the design code to generate the waverider shape from 

the given leading edge, without running the optimization routine. The cranked leading edge still 
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lies on the same conical shock wave produced by the generating cone used to design the straight- 

wing waverider. The cranked-wing waverider has similar characteristics to the straight-wing 

waverider. The span-to-length ratio is 0.932, which represents a significant increase in the aspect 

ratio. This increase in aspect ratio should provide a significant improvement in the subsonic and 

transonic performance over the straight-wing configuration, while maintaining the structural 

characteristics of the straight-wing waverider near the center line of the configuration. The 

volumetric efficiency of this configuration is 0.108 with a maximum lift-to-drag ratio of 6.743. The 

slight convex curvature of the bottom surface is maintained towards the center line of the model. 

The dihedral angle of the aft cranked section is approximately 28 degrees. The characteristics of 

the cranked leading edge waverider shape are summarized in table 2.2. 

2.5 Description of Wind Wnnel Model Components 

The “pure” waverider forebodies were designed based on the MAXWARP 

waverider shapes, with two slight modifications which were necessary to facilitate the integration 

of model support hardware as well as additional components. Additional volume was added to the 

upper surface of the configurations in order to accommodate the sting and balance necessary to 

measure the aerodynamic loads on the model during testing. Additional volume was added to the 

upper surface rather than the lower surface because previous research indicates that modifications 

to the lower surface have an effect on the propulsiodairframe integration characteristics of the 

~ave r ide r .~  Figures 2.8 and 2.9 show photographs of the straight-wing and cranked-wing 

waverider shapes with the additional volume added to the upper surface. The lower surface was 

modified slightly by creating an expansion surface that acts as a contoured nozzle near the center 

line of the model which begins approximately 22 inches from the nose of the configuration. The 

lower surface follows the waverider streamsurface to this point. This modification was made in 

order to facilitate the integration of engine components. Figure 2.10 shows a photograph of the 

lower surface of the cranked-wing waverider with the expansion on the aft end of this surface. The 

configuration was designed such that the leading edge shapes are identical to the point where the 
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cranked wings begin to curve upward along the conical shock wave. In order to minimize model 

changes, a configuration with a common center body and interchangeable wing tips was designed. 

This allows for the testing of both waverider shapes without removing the entire model. Figures 

2.11 and 2.12 illustrate this by showing a comparison of the planform shapes and base views, 

respectively, of the two waverider shapes. 

Canopies and propulsion systems components were designed for the waverider- 

based configuration. The first canopy was designed with faceted surfaces to resemble a realistic 

canopy for a hypersonic vehicle. Because of the design of the model, a canopy-off configuration 

could not be tested. Therefore, a smooth ogive canopy was designed in order to provide a 

comparison of the aerodynamic performance between the two canopies. These canopies are 

referred to as the faceted and smooth canopies, respectively. Figures 2.8 and 2.9 show the models 

with the smooth canopy attached, while figure 2.13 shows the faceted canopy attached to the 

model. The smooth canopy is also shown in figure 2.14. The engine package included an inlet and 

nozzle/expansion ramp. The engine-on data will provide an indication of the effect of modifying 

the waverider airframe to integrate a propulsion system and is not intended to provide an accurate 

simulation of propulsion effects. The inlet consists of a compression ramp with two side walls. 

Two different nozzle/expansion ramps were designed, one for use with configurations that do not 

have control surfaces attached and the second for use with configurations with control surfaces 

integrated. These are referred to as the “short” and “long” nozzles, respectively. Identical nozzles 

with static pressure taps were also fabricated in order to obtain surface pressure measurements on 

the nozzle. The non-instrumented ramps were used when obtaining force and moment data. Figure 

2.13 also shows the engine components integrated with the model. 

Control surfaces were designed and fabricated in order to examine their effects on 

waverider aerodynamic performance as well as the effectiveness of the control concept. The 

control surfaces close the blunt base of the configuration to a sharp trailing edge. Elevons were 

designed for angles of 0, positive 20 (trailing edge down) and negative 20 degrees. Because of the 

severe closure angle and the method by which the control surfaces were attached to the waverider 
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shape, different parts were fabricated for each fixed angle. A set of outboard ailerons for the same 

three angles was designed for the straight wing. Because of the curved surface of the cranked wing 

and the small thickness of the outer leading edge, the set of ailerons for the cranked-wing 

configuration consisted of an inboard aileron, which remained fixed at zero degrees, and a set of 

outboard ailerons, which were deflected at 0, positive 20 and negative 20 degrees. A vertical tail 

surface was also designed in order to augment directional stability. Figures 2.13 and 2.14 show 

photographs of the model components. 

Figure 2.15 shows an exploded view of the model components, indicating how the 

components fit together with the two waverider shapes. The design allowed for testing of the 

straight-wing and cranked-wing pure waverider configurations, which are defined as 

configurations with no engine components or control surfaces and with the smooth canopy 

attached. Various combinations of the waverider with different vehicle components could also be 

tested up to and including the fully-integrated waverider-derived configurations, which are defined 

as configurations with engine components, all control surfaces and with the faceted canopy 

integrated. Table 2.3 shows a list of reference quantities for each configuration tested. Detailed 

geometry specifications may be obtained from the author upon request. 
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Waverider Length 
Cone Length 
SpadLength 
Base-Heighmngth 
Volumetric Efficiency 
Planform Area, Sref 
Predicted Maximum LID 

Cranked Leading Edge Model 
with Engines and Controls. 

24.0 inches 
48.0 inches 
0.824 
0.0923 
0.112 
1.894 ft? 
6.859 

I 23*016 
2.346 

Table 2.1. Characteristics of Straight-Wing Waverider Designed by MAXWARP. 

Waverider Length 
Cone Length 
SpadLength 
Base-Heighmength 
Volumetric Efficiency 
Planform Area, Sref 
Predicted Maximum L/D 

24.0 inches 
48.0 inches 
0.932 
0.0923 
0.108 
2.052 ft? 
6.743 

Table 2.2. Characteristics of Cranked-Wing Waverider Designed by MAXWARP. 

Configuration ~ , f  <ft2) Span (in.) 

Straight Leading Edge Model 1.894 19.80 
with No Engines or Controls. 

I l9.*O 
Straight Leading Edge Model 1.894 
with Engines. (No Controls) 

I lge80 
Straight Leading Edge Model 2.202 I with Engines and Controls I 

I 23.016 
Cranked Leading Edge Model 2.052 
with No Engines or Controls 

I 23.016 
Cranked Leading Edge Model 2.052 
with Engines. (No Controls) 

Length (in.) 

24.0 

24.0 

26.597 

24.0 

24.0 

26.597 

Base Area (ft2) 

0.1580 

0.1481 

0.0194 

0.1860 

0.1745 

0.0194 

Table 2.3. Reference Quantities for Various Configurations. 
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igure 2.8. Straight-Wing Waverider hqodel in UPWT. 
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i Expansion Ramp 

igure 2.10. Photograph of Lower Surface of Cranked-Wing Waverider Model. 
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CHAPTER 3 
EXPERIMENTAL METHOD 

3.0 Summary 

The waverider model was tested in the high Mach number test section of the Unitary 

Plan Wind Tunnel (UPWT) at NASA Langley Research Center. The test configurations ranged 

from the baseline waverider configurations to the fully-integrated hypersonic waverider-derived 

cruise vehicles. The test conditions included pitch polars at Mach numbers of 2.3,3.5,4.0,4.2 and 

4.63. Data were also taken at a sideslip angle of 3' in order to examine the lateral-directional 

stability characteristics of the configurations. The model was instrumented with a 6-component 

strain gauge balance to obtain force and moment data. Static pressure tubes were placed at the 

blunt base in order to measure the base pressures as well as sting cavity pressures. Several runs 

were repeated with a nozzle surface instrumented with static pressure taps in order to measure 

pressures on this surface. Flow visualization data, including schlieren and vapor-screen 

photographs, were also obtained. The raw force data were corrected for flow angularity as well as 

base and chamber pressures. 

3.1 Facility Description 

The facility utilized in this study was the high Mach number test section of the 

Unitary Plan Wind Tunnel (UPWT) at NASA Langley Research Center. The UPWT is a closed- 

circuit, continuous-flow pressure tunnel with two 4x4x7-foot test sections. The Mach number 

range of the facility is 1.47 to 4.63, with a range in the high Mach number test section of 2.3 to 

4.63. Continuous variation of Mach number is achieved by using axisymmetric sliding block 

nozzles to vary the nozzle throat-to-test section area ratio. The Reynolds number range of this 

facility is 0 . 5 ~ 1 0 ~  to 8 . 0 ~ 1 0 ~  per foot. However the nominal Reynolds number for most tests is 

2 . 0 ~ 1 0 ~  per foot. Figure 3.1 shows a diagram of the layout of this facility. A detailed description 

of the UPW can be found in reference 13. 
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3.2 Test Configurations and Conditions 

The configurations tested range from the straight and cranked waverider shapes 

with no engines or control surfaces attached to the fully-integrated waverider-derived vehicles. 

The test configurations were chosen to show the pure waverider performance, to isolate the effects 

on waverider aerodynamic performance and stability of the canopy, engine package and control 

surfaces and to show the aerodynamic performance and stability characteristics of the fully- 

integrated configurations. Table 3.1 shows a list of configurations tested. For each configuration 

listed, a configuration number, leading edge shape, canopy type, elevon deflection angle and 

aileron deflection angle is shown. Note that a positive aileron or elevon deflection corresponds to 

a trailing edge down deflection, while a negative value corresponds to a trailing edge up deflection. 

Additionally, the configurations are labeled as either engine-off or engine-on. The test type for the 

first configuration is labeled as “flow angles” because this configuration was tested in upright and 

inverted positions for the purpose of obtaining estimates for the flow angles at each Mach number 

in the test section. (This process is described in further detail in section 3.3). Otherwise, for each 

configuration, either 6-component force and moment data, nozzle pressure data or vapor-screen 

photographs were obtained. Schlieren photographs were taken along with force and moment runs. 

The test conditions were chosen to investigate the performance and stability of each 

configuration at both the design Mach number and at off-design Mach numbers. Data were 

obtained at Mach numbers of 2.3,4.0 and 4.63 for all configurations studied and, additionally, at 

Mach numbers of 3.5 and 4.2 for some configurations. Data were obtained at a freestream 

Reynolds number of 2 . 0 ~ 1 0 ~  per foot and, in some cases, at Reynolds numbers of 1 . 5 ~ 1 0 ~  per foot 

and 3 . 0 ~ 1 0 ~  per foot in order to investigate the effects at off-design Reynolds numbers. Data were 

obtained over an angle-of-attack range of -6’ to 10’ and at sideslip angles of 0’ and 3’. Data were 

obtained for configuration number 2 over a sideslip-angle range of -5’ to 5’ at Mach numbers of 

2.3 and 4.63 and 0’ angle of attack. The data for yawing moment and rolling moment coefficients 

at each condition are plotted versus sideslip angle in figure 3.2. A non-zero value of roll and side 

force is observed at 0’ sideslip due to the difficulty in measuring the balance-to-model roll 
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misalignment angle precisely. The values for each parameter are nearly linear over the range of 

sideslip angles investigated. From these data, it was concluded that stability derivatives could be 

estimated by obtaining data at only two sideslip angles. Table 3.2 shows the run schedules used in 

the test. Run schedule 1 was used for configurations 1 through 7; run schedule 2 was used for 

configurations 8 through 18 and run schedule 3 was used for configurations 19 through 22. Run 

schedule 2 was also used for vapor screen runs with the exception that photographs were only taken 

at a 0’ sideslip angle. Transition grit was applied to the model in order to ensure a fully-turbulent 

boundary-layer at the conditions specified. The grit size was specified as number 35 grit and was 

placed along the top and bottom surfaces of the model at a distance of 0.4 inches aft of the leading 

edge in the streamwise direction. Recall that a fully-turbulent boundary-layer specification was 

made in MAXWARP when the waverider shapes were designed. 

3.3 Instrumentation and Data 

The data obtained from the wind-tunnel tests included 6-component force and 

moment data, static pressure readings on the blunt base of the model, static pressure data on the 

nozzle surfaces and flow visualization data. The model was instrumented with a 6-component 

internal balance to obtain force and moment data. The balance utilized in this case was the NASA- 

LaRC-designated UT-50-B balance. The moment reference center for all configurations was 

located 16.623 inches aft of the nose for all configurations. 

A total of eleven 5-psi pressure transducers were used to measure the static pressure 

along the blunt base of the configurations and in the cavity surrounding the sting. Figure 3.3(a) 

shows a diagram of the placement of static pressure tubes along the base of configurations with no 

control surfaces or engine components. The integrated areas used and pressure taps averaged to 

compute force coefficients to correct for base drag are also shown on the figure. The end of each 

tube was placed against, but not touching, the model surface at the locations indicated. The tubes 

were secured to the sting and connected to pressure transducers located outside of the test section. 

For configurations with no control surfaces, a 0.09” diameter tube with holes drilled in it was 

33 



secured to the blunt base and connected to another sting-secured pressure tube. This tube provided 

another reading of the average static pressure along the blunt base towards the outer wing tip. The 

same number of base pressure measurements were taken for configurations with no control 

surfaces, but with engine components. The position of some tubes was changed slightly to ensure 

that they were not behind the surface of the nozzle. For configurations with both engines and 

control surfaces, only 2 base and 2 chamber pressure measurements were taken. The placement of 

static-pressure tubes and integrated areas used for this case is shown in figure 3.3(b). A 32-port, 

5-psi external ESP module was used to measure the static pressure on the nozzle surface for four 

runs. Figures 3.4 (a) and (b) show drawings with the location of pressure taps on the nozzle 

surfaces for the short and long nozzles, respectively. Recall that the short nozzle is used with 

configurations that have no control surfaces, while the long nozzle is used with configurations that 

have control surfaces integrated. There were a total of 12 pressure taps on the short nozzle and 24 

pressure taps on the long nozzle. Integrated surface areas used to correct for nozzle surface 

pressures are shown in table 3.3. In the table, X corresponds to the streamwise direction, Y to the 

spanwise direction and 2 to the vertical direction. Therefore, the AX-Y area is the component 

applied to normal force and AY-2 is the component applied to axial force. As noted in figures 3.4 

(a) and (b), taps 1-12 are present on the short nozzle surface, while taps 1-24 are present on the long 

nozzle surface. 

Schlieren and vapor-screen photographs were taken in order to examine flow-field 

features including the shock attachment characteristics for various configurations. Prior to taking 

vapor-screen photographs, the model surface was painted black and 5 locations were identified on 

the model surface to be illuminated by the laser light sheet. The laser was positioned outside of the 

test section window during runs and the light sheet was projected across the model surface in the 

spanwise direction, illuminating one cross section at a time. The light sheet locations are shown 

in figure 3.5. The camera was mounted inside of the test section above and behind the model. 

The force and moment data were corrected for flow angularity and base pressure. 

Calibration data available for the UPWT indicates that the flow in both test sections has an upflow 
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angle generally within 0.5 degree~. '~ In order to obtain values for the flow angle at each Mach 

number, configuration 1 was run in an upright and inverted (rolled 180' about the model center 

line) position. Angle of attack sweeps were run at each Mach number in each position. The flow 

angles were computed after the initial set of runs and used for the remainder of the runs to correct 

angle of attack. As an example, figure 3.6 illustrates the computation of flow angle at Mach 4.63 

by comparison of the normal force coefficients versus angle of attack for the upright and inverted 

configurations. The axial force data were corrected for base and chamber pressures before 

computing lift and drag coefficients. Since the blunt base will be eliminated by the addition of 

control surfaces in any realistic waverider-derived configuration, it is necessary to eliminate the 

effect of the base in the force data. This is accomplished by subtracting measured values of base 

drag from axial force data and correcting the data to assume freestream pressure at the base. The 

integrated areas indicated in figures 3.3(a) and 3.3(b) were used to compute the component of axial 

force acting at the blunt base. The method of assuming freestream pressure at the base is consistent 

with the design code method and with previous studies showing predictions for waverider 

aerodynamic performance. Unless otherwise noted, all lift and drag coefficient data presented 

assume freestream pressure acting at the blunt base. 

The accuracy of the UT-50-B balance, based on a recent calibration, is 0.5 percent 

of full-scale for each component to within 95 percent confidence. The full-scale load limits were: 

600 lbf normal, 40 lbf axial, 1500 in-lbf pitching moment, 400 in-lbf rolling moment, 800 in-lbf 

yawing moment and 300 lbf side force. Using the method of root-mean-squares summation to 

combine independent error sources, this corresponds to a range of uncertainty in lift coefficient of 

0.0053 at -0' to 0.0054 at a = l O o  and an uncertainty range in drag coefficient of 0.00036 at a=Oo 

to 0.001 at a = l O o  for the M - 4 . 0  and Rem=2.0x106 per foot condition. The repeatability of 

measurements was observed to be better than these uncertainties. Therefore, differences less than 

these ranges observed in comparisons of data from different test configurations could be 

considered significant. However, comparisons between experimental data and independent 

measurements, such as CFD predictions, are only good to within to within these uncertainty ranges. 
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Engine/ Test Run 
Canopy Elevons Ailerons 

Config. Wing 
No. Type Inlet Type Schedule 

I I I 

1 I Cranked I Faceted I None 

2 1 Cranked I Faceted I None 

3 Straight Faceted None 

4 Straight Smooth None 

None 

None 

None 

None 

None 

None 

None 

, None 

I 

Off I Flow Angles 

Off I ForcelMoment 

ForcelMoment 

ForcelMoment 

ForcelMomen t 

ForcelMoment 

ForcelMoment 

1 

1 

1 

1 

1 

1 

1 

22 Cranked Faceted None None On Pressures 3 

5 Cranked Smooth None None Off Vapor Screen 2 

4 Straight Smooth None None Off Vapor Screen 2 

* Configurations 8 and 13 were run without a vertical tail. All other controls-on configurations 
were run with a vertical tail 

Table 3.1. Test Configurations 

36 



Reynolds NO. 
(Per Foot) Notes I Alpha I Beta I Mach No, 

1 I I I I 2.OX1O6 I 2.3 sweep I O.Oo, 3.0' I underspeed 

2. ox 1 o6 
2.OX1O6 

2.0X106 

I I I I I 2.0X1O6 I 4.63 sweep I O.O', 3.0' I overspeed 

2.3 sweep O.O',+/- 3.0' underspeed 

4.0 sweep O.O',+/- 3.0' design point 

4.63 sweep O.O',+/- 3.0' overspeed 

ReynoldsNo' I MachNo. I Alpha I Beta I (Per Foot) Notes 

Table 3.2. Run Schedules used in Wind Tunnel Testing. 
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22 

23 

24 

Coordinate Directions: X: Streamwise, Y Spanwise, 2: Vertical. 

0.761 0.388 0.262 0.257 0.089 

0.761 0.339 0.0 0.258 0.0 

0.761 0.507 0.0 0.386 0.0 

Table 3.3. Integrated Areas for Nozzle Surface Pressures. 
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CHAPTER 4 
COMPUTATIONAL METHODS 

4.0 Summary 

Computational Fluid Dynamics (CFD) solutions were obtained for the straight- 

wing design-code waverider shape and the “pure” straight-wing and cranked-wing models. The 

design-code shape refers to the waverider shape generated by the design code before the 

modifications discussed in section 2.4 were made. The “pure” waverider models refer to those 

configurations without engine components or control surfaces and with the smooth, ogive canopy 

attached. Solutions for these configurations were obtained in order to provide comparisons 

between the flow-field characteristics of the design-code shape and the fabricated model shape, 

between force coefficient and flow-field predictions from CFD solutions and experimental data for 

the pure waverider shapes, and between computational predictions and MAXWARP design-code 

predictions. The surface definition for the straight-wing design-code waverider was taken from the 

design code output and surface descriptions of the wind tunnel models were developed from 

computer-aided design (CAD) files of the model parts. Three-dimensional structured volume grids 

were created for each configuration and viscous CFD solutions were obtained using the General 

Aerodynamic Simulation Program (GASP). 16J7J9 Solutions were obtained at selected angles of 

attack at the design Mach number of 4.0 and at selected off-design Mach numbers at 0’ angle of 

attack. 

4.1 Computational Grids 

Computational grids were developed for each configuration studied by first 

developing a numerical surface description and then creating 3D volume grids. The surface 

coordinates output by MAXWARP were used as the numerical description for the design-code 

shape. Since the code produces shapes which have infinitely sharp leading edges, the leading edges 

were rounded in order to provide a better comparison with the predictions for the wind-tunnel 

models. Numerical surface descriptions of the straight-wing and cranked-wing wind-tunnel 
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models were obtained from CAD surface descriptions of the model parts. Three-dimensional 

volume grids were created for each configuration using the GRIDGEN software package, which 

utilizes algebraic transfinite interpolation methods with elliptic interior point refinement.14 

The computational grids for each of the three configurations model only half of the 

configuration since each is symmetric about the center line. The 6-computational direction runs 

from the nose of the configuration to the base of the configuration in the streamwise direction. The 

q-computational direction begins at the upper center line and wraps around the leading edge, 

ending at the lower center line. The e-computational direction runs from the surface of the 

configuration to the outer boundary. The computational and Cartesian coordinate systems are 

shown in figure 4.1. The grid for the straight-wing design code waverider shape contained 51 

points in the 5 direction, 79 points in the q direction and 6 1 points in the direction. The grids for 

each of the two model shapes contained 91 points in the 6 direction, 111 points in the q direction 

and 91 points in the direction. Additional points were necessary for these two grids in order to 

model the canopy, upper surface curvature and lower surface expansion. Blunt leading edges were 

modeled for each configuration. A close-up view of the base of the straight-wing model is shown 

in figure 4.2 in order to illustrate how this region is resolved. Grid points were also clustered near 

the surface of each configuration in order to adequately resolve the boundary layer flow. The 

amount of grid spacing needed is judged by examining the grid spacing parameter, y+, which is 

given by15 

where pc, uc, and pc are the density, velocity and viscosity at the first cell center next to the solid 

surface and A c  is the distance from the first cell center to the body surface. Previous research has 

shown that y+ values on the order of 1 provide accurate s o l ~ t i o n s . ~ ~  

4.2 Solution Method 

The CFD solutions were obtained using the General Aerodynamic Simulation 
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Program (GASP), version 2.2.16*17 GASP is a finite volume code based on the upwindrelaxation 

algorithms. The code is capable of solving the full Reynolds-averaged Navier-Stokes (RANS) 

equations as well as subsets of these equations, including the parabolized Navier-Stokes (PNS), 

thin-layer Navier-Stokes (TLNS) and Euler equations. Time integration in GASP is based on the 

integration of primitive variables, and convergence to a steady state solution is obtained by 

iterating in pseudo-time until the L2 norm of the residual vector has been reduced by a sufficient 

amount. GASP also contains several flux-split algorithms and limiters to accelerate convergence 

to steady state. Mesh sequencing is also available as a means to improve convergence. 

The computational method used in this study is to model each configuration as a two 

zone problem, as illustrated in figure 4.1. The first zone includes the blunt nose of the 

configuration. The flow in this region is a combination of subsonic and supersonic flow since there 

will be a small area of subsonic flow behind the detached bow shock. Therefore, the TLNS 

equations are solved over the entire zone using a global iteration procedure. The TLNS equations 

are obtained by neglecting all viscous terms parallel to the body surface. Only the viscous terms 

normal to the solid boundary are retained. The TLNS equations may be written in Cartesian 

coordinates as follows:18 

(4.3) -(pv) a +-(puv) a + - - ( p + p v  a 2 4 a v  --P--) +--(PVW) a = 0 
at ax a Y  3 ay a Z  

(4.4) 
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a a a aU 4 av aw aT 
a t  t ax t aY a Y  3 a Y  a Y  a Y  
-(E) +-(E U+PU)  + - ( E v + ~ v - / L u - - - ~ v - - ~ w - - ~ - )  

+- (Ew+pw)  a = 0 
a Z  t (4.5) 

In the preceding equations, E, represents the total energy, p is the density, u, v, and w are velocity 

components, p is the pressure and p is the viscosity coefficient. Furthermore, these equations 

assume that the y-direction is normal to the solid surface. Equation (4.1) is the continuity equation, 

equations (4.2) through (4.4) are the x, y, and z momentum equations and equation (4.5) is the 

energy equation. The second zone is the remainder of the configuration, extending from the zonal 

boundary to the base of the configuration. The flow in this region is solved by applying the PNS 

equations. The PNS equations are obtained by neglecting the streamwise viscous terms and are 

valid for predominately supersonic flows with no streamwise boundary layer separation. The PNS 

equations may be written in Cartesian coordinates as follows: '* 
a a a 4 P U )  +-(pv> +=&(PW) = 0 ax aY 

aU aU aU ap a a U  a aU pu-+pv-+pw- = --+-(p-) +-(p-) ax ay aZ ax ay ay aZ aZ 

av av av ap 
ax ay aZ ay pu-+pv-+pw- = -- 

4 3  av a av a aw 2 3  aw + --(p-) +-(p-) +-(p---) ---(p-) 3ay ay aZ aZ aZ ay 3ay aZ 

aw aw aw ap 
ax ay aZ aZ pu- +pv- +pw- = -- 

4 3  aw a aw a av 2 3  av + --(p-) +-(p-) +-(p-) ---(p-) 3az a Z  ay ay ay aZ 3az  ay 

(4.8) 

(4.9) 
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puC,g+pvC -+pwCVz aT a?. = -p(-+-+-) aU av aw +-(k-) aT a 
v a Y  ax ay aZ ay ay 

2 aU 2 aw av 2 
a Z  ay aZ + (-) +(-+-) ] + -(k-)+p a aT 

a Z  a Z  

(4.10) 

In the preceding equations, T is the temperature, C, is the specific heat at constant volume and the 

streamwise direction is assumed to be the x-direction. Equation (4.6) is the continuity equation, 

equations (4.7) through (4.9) are the momentum equations and equation (4.10) is the energy 

equation. The PNS equations allow the use of a space marching technique, whereby a single plane 

is fully converged before advancing to the next plane in the streamwise direction. This technique 

may be used since there is no downstream influence in supersonic flows. GASP also uses the 

Vigneron technique to correct for the presence of a streamwise pressure gradient in the subsonic 

region of the boundary layer when solving the PNS eq~at i0ns. l~ A no-slip boundary condition is 

applied to all solid boundaries with a fixed wall temperature of 585 ?R. This temperature is 

identical to that specified in the MAXWARP optimization routine when designing the waverider 

shapes. Freestream conditions are applied at the outer boundary; second order extrapolation from 

interior cells is applied at the last streamwise plane and symmetry boundary conditions are applied 

at the center line. The Baldwin-Lomax algebraic turbulence model was used in these solutions to 

model turbulent boundary layers17 and convergence to a steady state was obtained by reducing the 

L2 norm of the residual vector by 5 orders of magnitude. 

4.3 Conditions 

In order to make appropriate comparisons, the conditions at which solutions were 

obtained were chosen based on conditions at which experimental data were available. Solutions 

were obtained at Mach 4.0 at angles of attack of -6,0,2,4 and 8 degrees for the design-code shape 

and the straight-wing model. Solutions were obtained at Mach 4.0 at angles of attack of -6,O and 

8 degrees for the cranked-wing model. Solutions were also obtained at off-design Mach numbers 
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of 2.3 and 4.63 at 0' angle of attack for each of the three configurations. A summary of freestream 

properties for each condition run is shown in table 4.1. Flow-field characteristics and force 

coefficient predictions from computational solutions are presented in Chapter 5 along with 

experimental force, moment and flow visualization data for the pure waverider models. 

52 



Note: All of the above conditions correspond to a freestream Reynolds number of 
2 . 0 ~ 1 0 ~  per foot. 

Table 4.1. Freestream conditions used for computational solutions. 
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CHAPTER 5 

AERODYNAMIC PERFORMANCE 
WAVIERIDER FLOW-FIELD CHARACTERISTICS AND 

5.0 Summary 

The flow-field characteristics and aerodynamic performance of the two pure 

waverider configurations, with no integrated components except the smooth canopy, are examined 

in this chapter. The differences between the flow-field characteristics of the straight-wing design- 

code shape and the straight-wing pure waverider model are illustrated by comparing computational 

fluid dynamics (CFD) solutions for each configuration. The flow-field characteristics of the 

straight-wing and cranked-wing pure waverider models are examined at the design Mach number 

by comparing CFD solutions with experimental flow-visualization data. Flow-field variations over 

an angle of attack range at Mach 4.0 and at off-design Mach numbers are also shown. The 

aerodynamic performance and stability characteristics of the two pure waverider models are 

examined using experimental force and moment data. Flow-field and force coefficient predictions 

from CFD solutions are also presented for comparisons where appropriate. 

5.1 Flow-Field Characteristics at the Design Mach Number 

The flow-field characteristics of waverider configurations at the design Mach 

number can be illustrated by examining computational solutions of each configuration as well as 

experimental flow visualization data. Differences between the flow fields of the straight-wing 

design-code shape and the straight-wing pure waverider model are examined first by comparing 

CFD solutions of each configuration at Mach 4.0. This comparison will show the effects of the 

modifications made to the design-code shape in order to obtain the model shape, as discussed in 

chapter 2. Figure 5.1 shows non-dimensional static pressure contours at the center line of each 

configuration for solutions at Moo = 4.0, a=Oo and Reoo=2.0x106 per foot. The static pressures 

are non-dimensionalized by freestream pressure. The presence of the canopy on the straight-wing 

model causes a compression on the upper surface. The top surface of the design-code shape is 

designed as a freestream swface. The straight-wing design code shape does show a slight 
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compression on the upper surface, due to boundary layer displacement. The bottom-surface flow 

field of the straight-wing model is identical to that of the design-code shape up to the point where 

the expansion begins on the model surface. The presence of the expansion surface does not disrupt 

the smooth conical flow field on the bottom surface of the waverider model and does not degrade 

the waverider PAP characteristics. Figure 5.2 shows non-dimensional static pressure contours at 

the base of each configuration for the same two solutions. There is a large low pressure region in 

the bottom-surface flow field of the straight-wing model that extends from the center line to 

approximately half the distance to the outer leading edge. This is due to the expansion on the 

bottom surface of the model. The two additional flow-field features which can be seen in the 

solution of the straight-wing model are the bow shock above the upper surface and the edge of the 

expansion fan which originates at the point where the canopy blends with the upper surface. The 

high pressure region is confined below the bottom surface of both configurations and the shock is 

slightly detached from the leading edge. Figure 5.3 shows a close-up view of the outer leading 

edge of both configurations. Both views are shown to the same length scale. The leading edge of 

the model extends further out in the spanwise direction than the design-code shape because the 

procedure used to blunt the leading edges of the design-code shape was to shorten the leading edge, 

while the model shape was rounded by lengthening the leading edge. As a result, the detachment 

distance is smaller for the straight-wing model than for the design-code shape. This detachment 

distance exists at the design Mach number for both configurations due to blunt leading edge effects 

and boundary layer displacement effects. 

The flow-field characteristics of the straight-wing and cranked-wing pure waverider 

models are illustrated by presenting CFD solutions for each configuration as well as laser vapor- 

screen photographs from the wind-tunnel tests. Figure 5.4 shows a laser vapor-screen photograph 

of the flow at the base of the straight-wing pure waverider model and non-dimensional static 

pressure contours at the base of the same configuration from a CFD solution at Mach 4.0,0° angle 

of attack and freestream Reynolds number of 2 . 0 ~ 1 0 ~  per foot. The photograph was taken using a 

camera mounted behind the model and looking upstream. The model lower surface is highlighted 
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in the photograph by the laser light sheet on the surface. The bow shock is indicated by the contrast 

between light and dark regions below the light sheet. On the left-hand side of the photograph, the 

shock is observed to be meeting the edge of the lower surface. Thus, the vapor-screen photograph 

confirms the shock attachment characteristics predicted by the CFD solution. The experimental 

data and CFD predictions also indicate that the high pressure region remains confined below the 

model lower surface. The same type of data are shown in figure 5.5 for the cranked-wing pure 

waverider model. The shock can be seen in the right-hand side of the photograph meeting the outer 

leading edge of the model. The lower surface is again highlighted by the laser light. The 

experimental data confirm the shock attachment characteristic at the outer leading edge, which is 

predicted by the CFD solution for this case as well. Figure 5.6 further illustrates that the shock is 

slightly detached at the outer leading edge for both models. This figure shows a close-up view of 

the outer leading edge at the base of the cranked-wing and straight-wing configurations from CFD 

solutions at Mach 4.0 and 0' angle of attack. Both of the views in the figure are to the same length 

scale and non-dimensional static pressure contours are shown in each view. 

5.2 Off-Design Angle of Attack and Mach Number Effects on Flow-Field Characteristics 

The flow-field characteristics at off-design angles of attack may be examined by 

comparing laser vapor-screen photographs with computational solutions. Figure 5.7 shows a 

vapor-screen photograph of the cranked-wing pure waverider model taken at Mach 4.0 and -6' 

angle of attack. The photograph was again taken using a camera mounted behind the model and 

looking upstream and the upper surface is highlighted by the laser light. Also shown on the figure 

is a CFD solution for the same configuration at the same freestream conditions and angle of attack. 

Static pressure contours, non-dimensionalized by freestream pressure, are shown at the base of the 

configuration in the figure. The CFD solution indicates that the shock is detached from the leading 

edge. The detachment distance is slightly greater than at the zero degree angle of attack condition. 

A large high pressure region exists on the outer portion of the wing upper surface. This is due to 

a compression on the outer wing tips where the leading edges begin to turn upward. The shape of 
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the shock in the upper surface flow field is qualitatively confirmed by the vapor-screen photograph. 

Figure 5.8 shows a vapor-screen photograph and CFD solution of the same configuration at Mach 

4.0 and 8' angle of attack. The CFD solution again shows that the shock is detached from the outer 

leading edge at this angle of attack, but no significant amount of flow spillage occurs at the leading 

edge. The high pressure region is still mostly confined to the lower surface. A large low pressure 

region is present near the outer wing tips on the upper surface. The qualitative shock shape is 

confirmed by the vapor screen photograph. Figure 5.9 shows a comparison of CFD solutions of 

the straight-wing configuration at Mach 4.0 and angles of attack of -6' and 8'. Vapor-screen 

photographs were not available for this configuration at these conditions, due to the poor quality of 

the photographs taken during the experiment. Similar patterns are seen in the flow field of the 

straight-wing configuration as those that were observed for the cranked-wing model. The shock is 

detached from the outer leading edge at both conditions, but no significant amount of flow spillage 

occurs. The detachment distances are greater than for the cranked-wing configurations. 

The flow-field characteristics of each configuration at off-design Mach numbers can 

also be illustrated by examining experimental flow visualization data and CFD solutions. Figure 

5.10 shows a comparison of a vapor-screen photograph and a CFD solution for the cranked-wing 

model at Mach 2.3 and 0' angle of attack. The freestream Reynolds number is 2 . 0 ~ 1 0 ~  per foot. 

The orientation and data shown in this figure are the same as the previous figures. At Mach 

numbers below the design Mach number of 4.0, the shock wave angle is larger and the detachment 

distance should be much larger than at the design Mach number. This is confirmed in the CFD 

solution as well as the experimental data. There is a small amount of flow spillage from the lower 

surface to the upper surface, as evidenced by the high pressure values at the outer wing tip on the 

upper surface. Figure 5.11 shows similar views of the same configuration at Mach 4.63. The 

photograph in this figure was taken with the laser light sheet approximately 5 inches upstream of 

the base, since the quality of the photograph taken with the light sheet at the base was poor. Above 

the design Mach number, the shock moves closer to the leading edge than at the design Mach 

number, as illustrated in both the vapor-screen photograph and predicted by the CFD solution. 
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There is still a large high pressure region in the bottom-surface flow field of this configuration. 

CFD flow-field predictions for the straight-wing configuration are shown in figure 5.12. The 

computational solutions for the straight-wing model predict similar shock detachmenvattachment 

characteristics as the cranked-wing model at Mach 2.3 and Mach 4.63. The shock attachment 

characteristics can be further illustrated by examining planform schlieren photographs of the 

cranked-wing model. Figure 5.13 shows schlieren photographs of the cranked-wing model at 

Mach 2.3 (top), Mach 4.0 (middle) and Mach 4.63 (bottom). The right of the figure shows a close- 

up view near the leading edge at each Mach number. The schlieren images in this figure have been 

enhanced by computer imaging techniques in order to show the shock structure more clearly. At 

Mach 2.3, the schlieren photograph shows that the shock is detached from the leading edge. At 

Mach 4.0, the shock is much closer to the outer leading edge, but a small detachment distance still 

exists. At Mach 4.63, the photograph does not show the presence of a shock wave near the leading 

edge, possibly because the shock is attached at this condition. 

5.3 Aerodynamic Performance and Stability of Baseline Waverider Configurations 

The aerodynamic performance and stability characteristics are examined using 

experimental force and moment data and computational predictions. The performance of the 

straight-wing design-code shape and the straight-wing pure waverider model are examined first 

using CFD predictions for force coefficients in order to the show the effects of the modifications 

made to the design-code waverider shape. Then, the aerodynamic performance of the two pure 

waverider models are examined using experimental data and compared with CFD predictions. Off- 

design Mach number and Reynolds number effects are also evaluated. Finally, the longitudinal and 

lateral-directional stability characteristics are examined for each configuration using experimental 

data. All of the experimental and computational data presented assumes that freesteam pressure 

acts at the blunt base of the configurations, as discussed in section 3.3, and the reference moment 

center used is 16.623 inches aft of the nose for each configuration. 

The aerodynamic performance characteristics of the straight-wing design-code 
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shape and the straight-wing pure waverider model are examined in order to show the effects of the 

modifications ma& to the design-code shape. Figure 5.14 shows lift and drag coefficients as well 

as lift-to-drag ratios of both configurations at Moo = 4.0 and Rem=2.0x106 per foot. The data 

presented here are developed by integrated pressure and skin friction values from CFD solutions. 

Therefore, the predictions shown include both inviscid and viscous forces. Also shown in the 

figure are the design-code predictions for each quantity. The lift coefficient value for the design- 

code shape at 0' angle of attack is greater than that for the model. This is due to a loss of lift from 

the lower surface expansion of the model. As angle of attack increases, this difference diminishes. 

The values obtained from CFD predictions for the design-code shape are lower than the design 

code predictions. At lower values of lift coefficient, the drag values for the model are higher than 

that of the design-code shape, due to increased drag from the additional volume on the upper 

surface. However, at higher values of lift coefficient, the design-code shape shows higher drag 

values. The drag values obtained from CFD predictions are slightly higher than the design-code 

predictions. The design-code shape has a higher maximum lift-to-drag ratio and it occurs at a lower 

lift coefficient value than the model. At higher values of lift coefficient, the model shows higher 

lift-to-drag ratios. These comparisons of the performance characteristics of the two configurations 

indicate that the modifications made to the design-code shape to develop the wind-tunnel model 

did not cause a significant degradation in the waverider aerodynamic performance. 

The aerodynamic performance of the straight and cranked pure waverider 

configurations at the design Mach number is shown in figure 5.15. This figure shows experimental 

data and CFD predictions for the lift, drag and lift-to-drag ratios of each configuration at Mach 4.0 

and a Reynolds number of 2 . 0 ~ 1 0 ~  per foot. In general, there is good agreement between the 

experimental data and computational predictions. The experimental data show that the cranked- 

wing configuration has a slightly higher maximum lift-to-drag ratio than the straight-wing model. 

The experimental data also show that the maximum lift-to-drag ratio occurs near 2' angle of attack 

for each configuration. The design code assumes a waverider at 0' angle of attack as the design 

condition. This finding is consistent with previous studies, such as those in references 3 and 5, 
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which show that the maximum lift-to-drag occurs at an angle of attack greater than 0' for the 

configurations studied. At positive angles of attack, the straight-wing model shows higher values 

of lift coefficient than the cranked-wing model, because some of the pressure on the lower surface 

of the cranked wing-tips is accounted for as a component of side force. The cranked-wing model 

has lower drag values because it has a larger base area, and the assumption of freestream pressure 

at the base reduces the total drag of the configuration more than it does for the straight-wing 

configuration. 

The off-design performance of the straight-wing and cranked-wing pure waverider 

models is shown in figures 5.16 and 5.17, respectively. Each of these figures shows the 

experimental lift, drag and maximum lift-to-drag ratio at all Mach numbers studied as well as 

maximum lift-to-drag ratio versus Mach number. The data indicate that there is no significant 

performance degradation at off-design Mach numbers. Both configurations show higher maximum 

lift-to-drag ratios than the design point value at Mach numbers less than 4.0. This is not 

inconsistent with waverider methodology, since a waverider optimized for Mach 2.3 would have 

even better performance at Mach 2.3 than the Mach 4.0 configuration has here. Similar results have 

been found in previous studies?A5 The cranked-wing configuration has slightly better 

aerodynamic performance across the Mach number range than the straight-wing configuration. 

The effects of Reynolds number on aerodynamic performance of the straight-wing 

and cranked-wing configurations are shown in figures 5.18 and 5.19, respectively. There are no 

significant effects of Reynolds number variation for either configuration in the range studied, 

except for a slight increase in maximum lift-to-drag ratio at the 3 . 0 ~ 1 0 ~  per foot condition for both 

configurations. This is possibly due to the fact that boundary layer displacement thickness varies 

inversely with Reynolds number, so the shock detachment distance caused by boundary layer 

displacement may be somewhat smaller at higher Reynolds numbers. The smaller detachment 

distance could lead to less flow spillage and thus, lower drag values. An alternative explanation is 

that according to equation (2.21, the skin friction coefficient decreases as Reynolds number 

increases, resulting in decreased drag and thus increased lift-to-drag ratios at higher Reynolds 
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numbers. This effect is likely the largest contributor to the decreased drag values observed since 

the decrease in drag observed experimentally is approximately equal to the decrease in viscous 

drag predicted by equation (2.2). Computational solutions at Mach 4.0 and a Reynolds number of 

2 . 0 ~ 1 0 ~  per foot show that the viscous drag contribution is approximately 34 percent of total drag. 

The pitching moment characteristics of the straight-wing and cranked-wing pure 

waverider configurations are shown in figure 5.20. This figure shows the pitching moment 

coefficient versus angle of attack at each Mach number studied and the pitching moment slope 

versus Mach number for each configuration. Both configurations are unstable with respect to 

longitudinal motion at all Mach numbers, as evidenced by the positive pitching moment curve 

slope values. The yawing moment characteristics are shown in figure 5.21. This figure shows the 

yawing moment derivative versus angle of attack at each Mach number studied for both 

configurations. The straight-wing configuration is unstable with respect to directional motion at 

all Mach numbers studied, as evidenced by the negative values of yawing moment derivative. The 

cranked-wing configuration is stable with respect to directional motion at all Mach numbers 

studied at angles of attack above 4 degrees. Both configurations become more stable as Mach 

number decreases. The cranked-wing configuration is expected to provide enhanced directional 

stability from the increased dihedral angle at the outer leading edge. The rolling moment 

characteristics are shown in figure 5.22 for each configuration. The cranked-wing shows better 

lateral stability characteristics than the straight-wing model. The cranked-wing configuration is 

stable above 0' angle of attack at all Mach numbers. The straight-wing model is unstable at angles 

of attack below 8.0' at Mach 4.0 and Mach 4.63 and is unstable at angles of attack below 4' at 

Mach 2.3. 
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Figure 5.1. Nondimensionalized static pressure contours at the center line of the straight-wing 
design-code shape and model from CFD solutions at Mach 4.0, a=Oo. 
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MAXWARP Stmight-Wing Waverider Shape 
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Figure 5.2. Nondimensionalized static pressure contours at the base of the straight-wing design- 
code shape and model from CFD solutions at Mach 4.0, e o o .  
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Figure 5.3. Nondirnensionalized static pressure contours near the outer leading edge at the base of 
the straight-wing design-code and model shapes from CFD solutions at Mach 4.0, a=Oo. 
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Vapor-Screen Photograph of Base 
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Figure 5.4. Comparison of a base-view vapor-screen photograph and nondimensional static 
pressure contours from a CFD solution of the straight-wing model at Mach 4.0, a-0'. 
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, Comparison of a base-view vapor-screen photograph and nondimensional static 
pressure contours from a CFD solution of the cranked-wing model at Mach 4.0, moo. 
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Figure 5.6. Comparison of nondimensional static pressure contours near the leading edge at the 
base of the cranked and straight pure waverider models from CFD solutions at Mach 4.0, -0'. 
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Vapor-Screen Photograph at Base 

Base View of CFD Solution 
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figure 5.7. Comparison of a base-view vapor-screen photograph and nondiminsional static 
pressure contours from a CFD solution of the cranked-wing model at Mach 4.0, a=-6'. 
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Vapor-Screen Photograph at Base 
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Figure 5.8. Comparison of a base-view vapor-screen photograph and nondimensinal static 
pressure contours from a CFD solution of the cranked-wing model at Mach 4.0, a=8'. 
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Base View of CFD Solution at a=-6" 
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Base View of CFD Solution at a=8' 
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Figure 5.9. Comparison of nondimensional static p s s u r e  contours at the base of the straight-wing 
model from CFD solutions at Mach 4.0 and a=-6*, 8'. 

12 



VaporScreen Photograph at Base 
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m 
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. Comparison of a base-view vapor-screen photograph and nondimensional static 
pressure contours from a CFD solution of the cranked-wing model at Mach 2.3, a=Oo. 
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Vapor-Screen Photograph 5" Upstream of Base 

Base View of CFlD Solution 
p/p_ 

1.71 
1.62 
1.54 
1.46 
1.37 
1.29 
1.20 
1.12 
1.03 

~ 0.95 

Figure 5.11. Comparison of a base-view vapor-screen photograph and nondimensional static 
pressure contours from a CFD solution of the cranked-wing model at Mach 4.63, a=Oo 
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Base View of CFD Solution at Mach 2.3 
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Base View of CFD Solution at Mach 4.63 
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Figure 5.12. Comparison of nondimensional static pressure contours at the base of the straight- 
wing model from CFD solutions at Mach 2.3 and Mach 4.63 (bbth at a=Oo). 
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Figure 5.13. Comparison of plaiiform schlieren photographs of cranked-wing model 
at Mach 2.3,4.0 and 4.63. 
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CHAPTER 6 
COMPONENT BUILD-UP EWECTS 

6.0 Summary 

The effects of component buildup on both the straight and cranked waverider 

shapes are examined by presenting comparisons of experimental data from various configurations. 

The effects of the canopy on aerodynamic performance and the effects of adding engine 

components and adding 0’ control surfaces on aerodynamic performance and stability are 

examined. The issue of control surface effectiveness is not addressed in this study. Finally, 

comparisons between the fully-integrated configurations and the pure waverider configurations are 

made in order to quantify the differences in aerodynamic performance and stability in integrating 

the waverider into a realistic hypersonic cruise vehicle. 

6.1 Canopy Effects 

The effects of the canopy on the aerodynamic performance of the straight-wing and 

cranked-wing configurations are illustrated in figures 6.1 and 6.2, respectively. The configurations 

shown here have no control surfaces or engine components attached and the data are corrected to 

assume freestream pressure acting at the base. Each figure shows the lift and drag coefficients at 

Mach 4.0, lift-to-drag ratio at three different Mach numbers and the maximum lift-to-drag ratio at 

each Mach number studied for the smooth-canopy and faceted-canopy configurations. Since a 

“canopy-off” configuration could not be tested, comparisons between the faceted canopy and the 

smooth canopy are used to provide an indication of how the aerodynamic performance is affected 

by the addition of a realistic canopy to the waverider forebody. Both the straight-wing and 

cranked-wing configurations show little difference in lift when the canopy is changed. The 

faceted-canopy configurations show slightly higher drag than those with the smooth canopy. The 

result is a decrease in lift-to-drag ratio at positive values of lift over the Mach number range studied 

when the faceted canopy is substituted for the smooth canopy. There is a 3.6 percent reduction in 

lift-to-drag ratio at Mach 4.0 for the straight-wing configuration and a 5.1 percent reduction for the 
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cranked-wing configuration. This analysis indicates that the primary effect of adding a realistic 

canopy is a slight degradation in aerodynamic performance. 

6.2 Engine Component Effects 

The engine component effects are evaluated by comparing experimental data from 

engine-on and engine-off configurations. Figures 6.3 and 6.4 show the effects of adding the engine 

inlet and nozzle components to the straight-wing and cranked-wing configurations, respectively. 

The configurations shown here have the faceted canopy and no control surfaces integrated, and the 

data are corrected to assume freestream pressure acting at the base. Each figure shows lift and drag 

coefficients at Mach 4.0, lift-to-drag ratios at three different Mach numbers and the maximum lift- 

to-drag ratio at each Mach number studied for engine-on and engine-off configurations. The 

addition of engine components results a slight increase in lift and a significant increase in drag at 

Mach 4.0. These effects are caused by the inlet compression surface and the increase in projected 

frontal area. This results in a significant decrease in lift-to-drag ratio at positive values of lift over 

the Mach number range studied. The effect of the addition of engine components on drag and on 

lift-to-drag ratio is decreased as angle of attack increases. The straight-wing engine-on 

configuration shows a 19.7 percent reduction in the maximum lift-to-drag ratio at Mach 4.0 over 

the engine-off configuration. The cranked-wing model shows a 17.7 percent reduction at the same 

conditions. 

The same data are shown in figures 6.5 and 6.6 for the straight-wing and cranked- 

wing models with both the base pressures and the nozzle surface pressures corrected to freestream 

pressure. These data are presented to show the comparative aerodynamic performance without any 

propulsive effect on the nozzle surface, as discussed in chapter 3. The nozzle pressures were 

corrected by assigning integrated areas to each pressure tap and then correcting the force 

components to assume freestream pressure acting at the nozzle surface. The data with the nozzle 

pressures corrected show that there is a larger increase in lift and a smaller increase in drag, 

compared to the uncorrected data, when engine components are added to each configuration. There 

87 



is an increase in maximum lift-to-drag ratio at Mach 2.3. This is a result of higher freestream 

pressure at this Mach number, thereby resulting in a relatively large increment in lift for engine-on 

configurations when compared to higher Mach numbers. At all other Mach numbers studied, the 

maximum lift-to-drag ratio decreases when the engine components are added. At Mach 4.0, the 

engine-on model shows a 7.61 percent reduction in maximum lift-to-drag ratio for the straight- 

wing configuration and a 6.42 percent reduction for the cranked-wing configuration. This analysis 

indicates that the primary effect on aerodynamic performance of integrating the propulsion system 

is a degradation of the performance resulting from the significant increase in drag. 

The addition of engine components has a less significant effect on the longitudinal, 

lateral and directional stability characteristics of each configuration. Figures 6.7 and 6.8 show the 

effect of adding the engine package on the longitudinal and lateral-directional stability of the 

straight-wing and cranked-wing configurations, respectively. Each figure shows pitching moment 

at Mach 4.0, pitching-moment curve slope at each Mach number studied, the yawing moment 

derivative, C at each Mach number studied. The addition 

of engine components provides a further destabilizing shift in longitudinal stability, caused by the 

inlet compression surface, as evidenced by an increase in the pitching moment curve slope at each 

Mach number investigated. Both the straight-wing and cranked-wing engine-on configurations are 

longitudinally unstable across the Mach number range studied. The engine components cause a 

stabilizing shift in directional stability, as evidenced by increasing values of yawing moment 

derivatives, at each angle of attack over the Mach number range studied. The increase in CNP is 

due to the increased side force created by the inlet side walls. The straight-wing engine-on 

configuration is directionally unstable at most conditions, while the cranked-wing engine-on 

configuration is stable at angles of attack above 4'. The addition of engine components also causes 

,and rolling moment derivative, C 
NP LP' 

a stabilizing shift in lateral stability for both configurations, as evidenced by decreasing values of 

rolling moment derivatives at each angle of attack over the Mach number range studied. The 

straight-wing model is laterally stable at angles of attack above 2' at Mach 2.3 and above 6' at 

Mach 4.0 and Mach 4.63. The cranked-wing model is stable above angles of attack of 0'. 
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6.3 Control Surface Effects 

The effects of adding 0' control surfaces are illustrated by comparing 

configurations with no control surfaces to those with 0' ailerons and 0' elevons attached. Each 

configuration also has the faceted canopy and engine packages integrated. Data for both the 

straight-wing and cranked-wing configurations are shown. The coefficient data are reduced by the 

planform areas of each corresponding configuration so the effects of increased planform are 

accounted for in the normalization of these data. 

The effect of adding 0' control surfaces to the straight-wing waverider 

configuration is summarized in figure 6.9. This figure shows the lift and drag coefficients at Mach 

4.0, lift-to-drag ratios at each Mach number studied and the maximum lift-to-drag ratios at each 

Mach number for both the controls-on and controls-off case. The addition of control surfaces 

causes a decrease in lift coefficient at Mach 4.0. This is partially caused by the large expansion 

angle which is present on the elevon lower surfaces. There is also a significant increase in drag, 

partially due to a large thrust component acting at the base in the controls-off case, which comes 

from the assumption of freestream pressure acting at the base. This component of force does not 

exist in the controls-on case because of the significantly smaller base area. Because the two 

configurations compared have significantly different base areas, the increase in drag is deceptive 

and is not due purely to any aerodynamic effect. However, the assumption of freestream pressure 

acting at the base is consistent with the design method, so the data presented here provide an 

accurate representation of the performance degradation from predicted design values due to the 

closure of the blunt base. A significant decrease in maximum lift-to-drag ratio is observed at all 

Mach numbers studied. The maximum lift-to-drag ratio of the controls-on configuration does not 

vary significantly across the Mach number range. The addition of control surfaces causes a 13.9 

percent reduction in maximum lift-to-drag ratio of the straight-wing configuration at Mach 4.0. 

The effects of control surface addition on the cranked-wing configuration are identical to that of 

the straight-wing model. Figure 6.10 summarizes these effects. The addition of 0' control surfaces 
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causes a 17.7 percent reduction in the maximum lift-to-drag ratio at Mach 4.0 for this 

configuration. 

The addition of 0' control surfaces causes a stabilizing shift in pitching moment 

curve slope and enhances lateral-directional stability. Figures 6.11 and 6.12 show the longitudinal 

and lateral-directional stability characteristics of the straight-wing and cranked-wing 

configurations, respectively. Each figure shows the pitching moment values at Mach 4.0, pitching- 

moment curve slope values at each comparative Mach number and yawing and rolling moment 

derivatives at each Mach number studied for controls-on and controls-off configurations. The 

addition of control surfaces causes a decrease in pitching-moment curve slope for both the straight- 

wing and cranked-wing configurations indicating improved longitudinal stability, although both 

Configurations are unstable. There is also a slight positive shift in yawing moment derivative 

values, indicating enhanced directional stability. There is a slight negative shift in rolling moment 

derivative values, indicating an improvement in lateral stability. The exception to this trend is a 

slight destabilizing shift observed for the straight-wing configuration at angles of attack above 2' 

at Mach 4.0. 

6.4 Vertical Tail Effects 

The effect of the vertical tail is to significantly enhance the directional stability of 

both the straight-wing and cranked-wing configurations. Figure 6.13 shows the effect of the 

vertical tail on yawing moment derivative values for each configuration. The configurations shown 

in this figure have the faceted canopy, engine components, 0' ailerons and 0' elevons installed. 

Comparisons are made for vertical tail-off and vertical tail-on configurations for each leading edge 

shape. The addition of the vertical tail causes a large positive increase in yawing moment 

derivatives, indicating enhanced directional stability. Both the straight-wing and cranked-wing 

configurations are directionally stable at all Mach numbers investigated with the vertical tail and 

all other control surfaces installed. 
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6.5 Comparison of Waverider-Derived Configurations with Pure Waverider Shapes. 

The final step in the analysis of component buildup effects is to compare the 

aerodynamic performance and stability characteristics of the fully-integrated waverider-derived 

configurations with the pure waverider configurations. As previously discussed, the pure 

waverider configurations presented in this section have the smooth canopy with no engine 

components or control surfaces integrated. The fully-integrated configurations have the faceted 

canopy, enginehnlet and nozzle, 0' ailerons, 0' elevons and a vertical tail attached. Aerodynamic 

performance data are presented along with longitudinal, lateral and directional stability data. 

Comparisons are made for both the straight-wing and cranked-wing configurations. 

Comparisons of the aerodynamic performance of the straight-wing pure waverider 

model and the fully-integrated configuration are shown in figure 6.14 and 6.15. Figure 6.14 shows 

lift and drag coefficients at Mach 4.0, lift-to-drag ratios at each Mach number studied and the 

maximum lift-to-drag ratios at each comparative Mach number. These data are presented with the 

base pressures corrected to freestream pressure, but with the nozzle surface pressures uncorrected. 

The aerodynamic performance of the fully-integrated configuration is significantly degraded from 

that of the pure waverider shape. A reduction in lift coefficient for the fully-integrated 

configuration is observed at Mach 4.0 above 0' angle of attack, due to the severe closure angle of 

the elevon surfaces. The difference in lift coefficient values between the two configurations 

increases as angle of attack increases. A significant increase in drag is observed when all 

components are integrated with the pure waverider model. Part of this increase is again due to the 

significantly different base areas between the two configurations and the assumption of freestream 

pressure acting at the base. The result is a significant decrease in lift-to-drag ratio at all Mach 

numbers studied. The maximum lift-to-drag ratio of the fully-integrated model is 4.39 compared 

to 6.68 for the pure waverider model. This corresponds to a 34.5 percent decrease when all 

components are integrated. The maximum lift-to-drag ratio for the fully-integrated configuration 

occurs at a 2' angle of attack and no significant performance degradations are observed at off- 

design Mach numbers for this configuration. In fact, the maximum lift-drag ratios of the fully- 
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integrated configuration are relatively constant across the Mach number range investigated. Figure 

6.15 shows the same data presented with the nozzle surface pressures corrected to freestream 

pressure. These data provide an accurate assessment of the effects of modifying the waverider 

airframe to integrate engine components, since no propulsive forces are included. Using this 

method, there is a smaller increase in drag than with the nozzle pressures uncorrected. This results 

in smaller decreases in lift-to-drag ratios at positive values of lift at each Mach number studied. 

There is still a significant decrease in maximum lift-to-drag ratios when comparing the pure 

waverider to the fully-integrated model at each Mach number studied. From the data with the 

nozzle surface pressures corrected, the maximum lift-to-drag ratio of the fully-integrated 

configuration at Mach 4.0 is 4.69, which corresponds to a 29.8 percent decrease from that of the 

pure waverider model. 

A comparison of the fully-integrated cranked-wing configuration and the pure 

cranked leading-edge waverider model yields conclusions similar to those of the comparison of the 

straight-wing configurations. Figures 6.16 and 6.17 show the aerodynamic performance of these 

two configurations with only the base pressures corrected to freestream pressure and with both the 

base and nozzle surface pressures corrected to freestream pressure, respectively. The maximum 

lift-to-drag ratio at Mach 4.0 of the fully-integrated configuration is 4.27 compared to a value of 

6.72 for the pure cranked-wing model. This corresponds to a 36.5 percent decrease in maximum 

lift-to-drag ratio at Mach 4.0 when vehicle components are added to the pure waverider. When the 

nozzle surface pressures are corrected to freestream pressure, the maximum lift-drag ratio for the 

fully-integrated configuration becomes 4.56, which corresponds to a reduction of 32.2 percent 

when compared to that of the pure waverider model. The maximum lift-to-drag ratios of the fully- 

integrated configuration are lower than those for the pure waverider model at all Mach numbers 

studied and this value remains relatively constant across the Mach number range studied for the 

fully-integrated model. 

The straight-wing fully-integrated configuration provides better aerodynamic 

performance than the cranked-wing fully-integrated configuration. The straight-wing model 
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shows a maximum lift-to-drag ratio which is 3.82 percent higher than that of the cranked-wing 

configuration at the design Mach number of 4.0. This difference drops to 3 percent when the nozzle 

surface pressures are corrected to freestream pressure on both configurations. Both configurations 

have maximum lift-to-drag ratios above 4.0 which is comparable to conventional supersonic/ 

hypersonic shapes, but does not appear to provide a significant performance. Furthermore, the lift- 

to-drag ratios of the fully-integrated configurations are significantly lower than design-code 

predictions, as expected. 

The fully-integrated configurations have better longitudinal and lateral-directional 

stability characteristics than the pure waverider configurations. Figures 6.18 and 6.19 show the 

pitching moment at Mach 4.0, the pitching moment curve slope and the yawing and rolling moment 

derivatives at each Mach number studied for the straight-wing and cranked-wing waveriders, 

respectively. A comparison of the fully-integrated and pure waverider configurations are shown 

on each plot. The fully-integrated configurations are more stable with respect to longitudinal 

motion than the pure waverider. Both fully-integrated configurations are still longitudinally 

unstable at all Mach numbers studied, but the cranked-wing model is more stable than the straight- 

wing configuration. The fully-integrated configurations are also more stable with respect to 

directional motion than the pure waverider models. Both the straight-wing and cranked-wing 

fully-integrated models are directionally stable at all Mach numbers studied, with the cranked- 

wing model providing more stability than the straight-wing model. Each fully-integrated model is 

also more laterally stable than the corresponding pure waverider configuration, with the cranked- 

wing configuration providing better stability than the straight-wing model. 
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CHAPTER 7 
CONCLUSIONS AND RECOMENDATIONS 

7.0 Summary 

The objectives of this study were to create an aerodynamic data base for waverider- 

derived hypersonic cruise configurations, to examine the effects of various vehicle components on 

waverider aerodynamic performance and stability and to quantify the differences in performance 

and stability between the fully-integrated configurations and the baseline waverider shapes. These 

objectives were accomplished by obtaining experimental force and moment data as well as flow 

visualization data for two waverider models, a straight-wing and a cranked-wing waverider. Data 

were obtained for various configurations with and without integrated vehicle components, up to 

and including the fully-integrated waverider-derived vehicles. Limited computational predictions 

were also obtained for the “pure” waverider configurations, which have no engine components or 

control surfaces. The waverider flow-field characteristics were examined from CFD solutions, as 

well as from schlieren and vapor-screen photographs of the models. The effects of individual 

vehicle components on waverider performance were isolated by comparing experimental force and 

moment data for various configurations. Finally, experimental data for the aerodynamic 

performance and stability characteristics of the fully-integrated configurations were compared with 

data from the pure waverider models. Future research in this area should include improvements in 

design methods, obtaining experimental data and computational predictions in various speed 

regimes and powered exhaust simulation testing to evaluate the propulsiodairframe integration 

(PAI) characteristics of waverider-derived models. 

7.1 Waverider Flow-Field Characteristics and Performance Analysis 

Comparisons of CFD solutions of the straight-wing design-code shape and the 

straight-wing pure waverider model at the design Mach number of 4.0 showed that the 

modifications made to the design-code waverider shape in order to facilitate fabrication of the wind 

tunnel model did not have a significant effect on the aerodynamic performance or on the flow-field 
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characteristics of the waverider shape. The modified waverider shape maintained advantages in 

aerodynamic performance and propulsiodairframe integration (PAI) characteristics. CFD 

predictions and laser vapor-screen photographs of the straight-wing and cranked-wing pure 

waverider models confirmed the shock attachmenddetachment characteristics of each 

configuration. The shock was slightly detached from the outer leading edge at the design Mach 

number of 4.0 and 0' angle of attack. This detachment distance exists because of boundary layer 

displacement effects as well as blunt leading-edge effects. The design code assumes an infinitely 

sharp leading edge and does not account for the presence of a boundary layer. The CFD predictions 

and flow visualization data also showed that the shock was detached from the leading edge at 

angles of attack of -6' and 8' at Mach 4.0 and that a large detachment distance was present at Mach 

2.3 and 0' angle of attack for both the straight and cranked waverider models. 

The aerodynamic performance and stability of the two pure waverider models were 

examined using experimental force and moment data as well as integrated pressure and skin- 

friction predictions from CFD solutions. The results showed that: 

1, The cranked-wing pure waverider model exhibited slightly better aerodynamic 

performance at the design Mach number than the straight-wing model. 

2. The maximum lift-to-drag ratios observed experimentally were lower than the 

design-code predictions, as expected. This was due to a loss of lift and increase in 

drag caused by the shock not being perfectly attached as well as to a loss of lift from 

the lower-surface expansion and an increase in drag from the additional volume 

added to the upper surface. The maximum lift-to-drag ratio for each configuration 

occurs at an angle of attack above 0'. 

3. There was no significant performance degradation of the pure waverider 

configurations at off-design Mach numbers. 

4. Both pure waverider models were longitudinally unstable at all Mach numbers 

studied and the cranked-wing pure waverider configuration showed better lateral- 

directional stability characteristics than the straight-wing pure waverider 
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configuration, as expected. 

7.2 Component Build-Up Effects 

Component build-up effects on> the aerodynamic performance and stability of both 

waverider shapes were examined by comparing experimental force and moment data. This 

analysis showed that: 

1. The primary effect of adding the faceted canopy was to increase the drag of the 

configuration, thereby resulting in a slight degradation in aerodynamic 

performance. 

2. The effect of adding the engine package was to significantly increase the drag and 

degrade the aerodynamic performance. A slight increase in lift was also observed, 

caused by the inlet compression surface. The performance degradation observed 

was less severe when the nozzle surface pressures were corrected to assume 

freestream pressure acting at the nozzle surface. The data presented with nozzle 

surface pressure corrected show the effects on performance without any propulsive 

component. 

3. The addition of engine components caused a slight destabilizing shift in longitudinal 

stability and slightly enhanced the lateral-directional stability of both the straight- 

wing and cranked-wing configurations. 

4. The addition of control surfaces significantly degraded the aerodynamic 

performance of each configuration. Much of the performance degradation was 

caused by a large reduction in the base area when control surfaces were added to 

close the blunt base to a sharp trailing edge. The data for all of the configurations 

were presented with the base pressures corrected to freestream pressure in order to 

eliminate the effect of the base in performance data. These results indicate that 

additional consideration should be applied to the design of control surfaces and 

aftbody closure in waverider-based hypersonic cruise configurations. 
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5. The addition of control surfaces caused a stabilizing shift in pitching moment curve 

slope and enhanced the lateral-directional stability of both configurations. 

However, the controls-on configurations were longitudinally unstable at all Mach 

numbers studied. 

7.3 Evaluation of Fully-Integrated Configuration 

The aerodynamic performance of both fully-integrated waverider models was 

significantly degraded from that of the pure waverider shapes. The straight-wing fully-integrated 

configuration provided slightly better aerodynamic performance than the cranked-wing fully- 

integrated model. The maximum lift-to-drag ratios at Mach 4.0 are 4.69 for the straight-wing 

model and 4.27 for the cranked-wing model. By comparing these values to the “LD Barrier” 

shown in figure 2.2 and discussed in chapter 2, it is observed that the fully-integrated waverider- 

derived configurations no longer provide a significant performance advantage over conventional 

hypersonic shapes. However, the performance is not significantly worse than conventional shapes 

and the waverider flow field still provides significant advantages for air-breathing propulsion 

systems integration. Furthermore, the results of this study have identified areas which could be 

improved, such as control surfaces, aftbody closure and propulsion system design. Improvements 

in these areas could enhance the performance of waverider-derived configurations. Improvements 

in waverider design methods, such as accounting for the change in effective surface slope due to 

boundary layers, including blunt leading edges in optimization routines and using different 

generating flow-field bodies, could also enhance the performance of pure waverider shapes. 

The fully-integrated configurations exhibited better longitudinal and lateral- 

directional stability characteristics than the pure waverider shapes. However, both fully-integrated 

configurations were unstable with respect to longitudinal motion. The control surface design 

should be revised to improve the longitudinal stability of the vehicle. The addition of a functioning 

propulsion system will also enhance the longitudinal stability of waverider-derived vehicles. 

Additionally, the shift in static margin could be controlled using fuel shift for this type of vehicle 
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in order to provide at least neutral stability over the angle-of-attack range. Both configurations 

were stable with respect to lateral-directional motion. The cranked-wing configuration provided 

better lateral-directional stability characteristics than the straight-wing waverider configurations. 

7.4 Recommendations For Future Research 

Future research in the development of waverider-derived hypersonic cruise vehicles 

should center on evaluation of control surface effectiveness, improvements in design methods, 

obtaining aerodynamic data and computational predictions across all speed regimes and powered 

exhaust simulation testing. Specifically, the following studies are recommended: 

1. The effectiveness of the current control surface design should be evaluated using 

experimental data obtained for aileron-deflected and elevon-deflected 

configurations. A re-design of the control surfaces may be necessary to ensure 

longitudinal stability and to minimize the aerodynamic performance degradation 

observed in the current study. 

2. Computational solutions of the fully-integrated configurations should be obtained in 

order to make comparisons with experimental force and moment data and to 

provide additional information on the flow-field characteristics of each 

configurations. 

3. The design method should be improved to account for the displacement thickness of 

the boundary layer. This may result in performance improvements by decreasing 

the shock detachment distance observed at the design Mach number. 

4. Blunt leading edges should be accounted for in future optimized designs. Leading 

edge shape and heat transfer to the leading edge have been examined in previous 

studies?' and an updated version of the design code used in the current study has 

been developed which allows for the design of waveriders with blunt leading 

edgesF1 

5. Studies examining the performance of waveriders designed from flow fields other 
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than conical ones should be conducted. Preliminary research in this area has shown 

that it is possible to generate waveriders from different generating flow fields, 

resulting in improved PAI characteristics and greater volume22 Improvements in 

aerodynamic performance may also be p~ss ib le .~  

6.  Component build-up, aerodynamic performance and flow-field characteristics 

should be examined at subsonic, transonic and low supersonic speeds. 

Experimental data and computational solutions should be obtained. The advantages 

offered by the cranked-wing shape in subsonic performance should be validated. 

7. Additional studies in PAI methods and design of propulsion systems for waverider- 

derived hypersonic cruise vehicles should be conducted. 

8. Powered exhaust simulation studies should be conducted to examine the effects of 

a functioning propulsion system on the external aerodynamics of waverider-derived 

models. Data should be obtained at subsonic, transonic, supersonic and hypersonic 

speeds. Data at subsonic speeds would yield information regarding ground effects 

of the propulsion system. 
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